Discovery of Hidden Correlations in a Local Transaction Database Based on Differences of Correlations

نویسندگان

  • Tsuyoshi Taniguchi
  • Makoto Haraguchi
  • Yoshiaki Okubo
چکیده

Given a transaction database as a global set of transactions and its sub-database regarded as a local one, we consider a pair of itemsets whose degrees of correlations are higher in the local database than in the global one. If they show high correlation in the local database, they are detectable by some search methods of previous studies. On the other hand, there exist another kind of paired itemsets such that they are not regarded as characteristic and cannot be found by the methods of previous studies but that their degrees of correlations become drastically higher by the conditioning to the local database. We pay much attention to the latter kind of paired itemsets, as such pairs of itemsets can be an implicit and hidden evidence showing that something particular to the local database occurs even though they are not yet realized as characteristic ones. From this viewpoint, we measure paired itemsets by a difference of two correlations before and after the conditioning to the local database, and define a notion of DC pairs whose degrees of differences of correlations are high. As the measure is non-monotonic, we present an algorithm, searching for DC pairs, with some new pruning rules for cutting off hopeless itemsets. We show by an experimental result that potentially significant DC pairs can be actually found for a given database and the algorithm successfully detects such DC pairs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Algorithm for Mining Implicit Itemset Pairs Based on Differences of Correlations

Given a transaction database as a global set of transactions and its local database obtained by some conditioning to the global one, we consider a pair of itemsets whose degrees of correlations are higher in the local database than in the global one. A problem of finding paired itemsets with high correlation in one database is known as Discovery of Correlation, and some algorithms to search for...

متن کامل

A hybrid approach for database intrusion detection at transaction and inter-transaction levels

Nowadays, information plays an important role in organizations. Sensitive information is often stored in databases. Traditional mechanisms such as encryption, access control, and authentication cannot provide a high level of confidence. Therefore, the existence of Intrusion Detection Systems in databases is necessary. In this paper, we propose an intrusion detection system for detecting attacks...

متن کامل

An Efficient Association Rule Mining by Optimal Multiple-Core Algorithm

Association mining aims to extract frequent patterns, interesting correlations, associations or casual structures among the sets of objects in the transaction files or from the other data repositories. It plays a vital role in spawning frequent item sets from large transaction databases. The discovery of interesting association relationship among business transaction records in many commercial ...

متن کامل

Disagreement between correlations of quantum mechanics and stochastic electrodynamics in the damped parametric oscillator

Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics ~SED!, a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system’s nonlinear coupling constant and those of SED being linear in the same constan...

متن کامل

روشی کارا برای کاوش مجموعه اقلام پرتکرار در تحلیل داده‌های سبد خرید

Discovery of hidden and valuable knowledge from large data warehouses is an important research area and has attracted the attention of many researchers in recent years. Most of Association Rule Mining (ARM) algorithms start by searching for frequent itemsets by scanning the whole database repeatedly and enumerating the occurrences of each candidate itemset. In data mining problems, the size of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2005